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ON THE BUCKLING FORCE
OF FLOATING ICE PLATES

Arnold D. Kerr

INTRODUCTION consists of "rigid bars" interconnected by elastic spiral
springs and resting on straight vertical springs. This

The analytical determination of the largest horizon- model contains the observed buckling mechanism of a
tal force a floating ice cover may exert on a structure compressed floating ice cover and is amenable to a
is based on the criterion that an Ice force cannot be simple nonlinear exact analysis. It is assumed that the
larger than the force capable of breaking up the ice rigid bars are horizontal when subjected to the uniform
cover. load distribution q0 (their own weight). In this position

In many publications, as discussed by Korzhavin of equilibrium the spiral springs are stress-free and each
(1971) and Michel (1970), this failure criterion is re- of the straight vertical springs is compressed by a force
lated to a "crushing strength" of the ice cover. There kwO. Thus, the vertical displacement is
it is assumed that the failure mechanism consists of the
crushing and/or splitting of the floating ice plate in the Wo = q0 L/k (1)
immediate vicinity of the structure.

However, in a number of laboratory and field tests where k is the stiffness of the vertical springs. Next,
it was observed that for ice covers that are relatively the bars are subjected to an axial force P. For increas-
thin (compared to the width of contact of plate and ing P, deformed states of equilibrium may exist, as
structure) the ice cover failed by buckling in the vicin- shown in Figure 2a. Assuming that the bars at joint 2
ity of the contact area. Thus, for these cases, the buck- will not separate from the base spring and thus that
ling force is smaller than the crushing force, and the
determination of the largest force should be based on w L sine or qo/k > sine (2)
the force at which the floating ice cover is expected to
buckle. the equilibrium equation for the deformed state is

The related buckling analyses and tests were recently
reviewed and discussed by Kerr (1978). In all these P* sine = G+k* sinO cosO (3)
analyses it was assumed that the buckling load corres-
ponds to the first bifurcation load pc,, an assumption where, denoting the parameter of the spiral springs by s,
justified when the post-buckling equilibrium branch
rises monotonically with increasing displacements. P* = PL/3s; k* = kL2f6s. (4)
However, according to recent studies by Lekkerkerker
(1962), Kerr (1972), and Plaut (1978), this is not the Note that q0 does not appear in equilibrium equation 3
case in general. The purpose of the present report is to because of the linearity of the base springs. Also note
clarify this situation for the floating ice plate problem, that eq 3 is satisfied for 0 = 0. Thus, the straight state

is in equilibrium (but not necessarily stable) for any
S load P. For very small values of 0, eq 3 reduces to.SIMPLE MODEL FOR ICE COVER BUCKLING (*l-*O=0 Y

To study the basic features of the title problem we
consider first the simple model shown in Figure 1, which Thus, at the bifurcation point
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Figure 1. Simple buckling model (qo is the uniform load distribution,

s the spiral spring parameter, and L the distance between the vertical
springs).

(a) without lift-off
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Figure 2. Deformed model.

Pcr= I +k. (5) Consider the model with k* = 1.0. According to
Figure 3, for each P < PL there exists only one straight

Equation 3 was evaluated numerically for various val- equilibrium state, for PL < P < Pcr there exist five
ues of k. The results are shown in Figure 3. equilibrium states, and for each P > Per three states of

For a proper interpretation of the results shown in equilibrium are possible. It may be shown (Kerr 1974)
Figure 3a, note that, as shown in Figure 4 (Kerr 1970), that a straight equilibrium state is stable below Pcr and
the equilibrium branch rises monotonically when the unstable above it, that the equilibrium states on branch
model bars are constrained only by a spiral spring Per L are unstable, and that the equilibrium states on
(bending effect), whereas the equilibrium branch branch LB are stable.
drops when the model bars are constrained by a When the axial load P has a small vertical eccentric-
straight spring (effect of base). This is the reason why ity, the equilibrium branches are as shown by the
in Figure 3a, for large values of k* (i.e. when the base dashed lines in Figure 3b. The effect of vertical shape
stiffness predominates), the equilibrium branch drops imperfections is similar. Note that with increasing
at first and then rises, exhibiting a lower buckling load small eccentricities, or shape imperfections, the upper

tPL < Pr" buckling load Pu drops rapidly. Structures of this type
From the graphs in Figure 3a, it follows that the are referred to in the literature as "imperfection sensi-

value of k* which separates the different responses is tive."
located in the interval 0 < ks' < 0.5. Using the per- Because of the existence of load and geometrical
turbation method, Kerr (1972) showed that for the imperfections (and dynamic inputs) in an actual situa-
model under consideration tion, buckling will take place for PL < P < Pr, where

PL is the value for the structure with imperfections.
k* = 1/3. (6) Thus, for the cases that exhibit a PL value, P,, is not

the true buckling load.

2
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Figure 3. Equilibrium branches for model without/lift-off For 9 < 0 the branches are
symmetrical to the P* axis.
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Figure4. u i mple models and their equilibrium branches

Next consider the case when the bars are resting on, The reason for the large post-buckling deformations in
but are not attached to, the base spring at joint 2; i.e. Figures 3 and 5 is the assumption that an axial force P
they may lift off the spring base, as shown in Figure remains the same also at the post-buckling equilibrium
2b. This may occur in an actual situation with floating points. However, it was shown by Kerr (1973) that,
ice covers. For this case, until lift-off takes place, the when the axial compression force is induced by a temn-
governing equilibrium equation is eq 3. After lift-off, perature raise, the axial force drops and the post-buck-
namely when ling deformations are much smaller.

According to Figure 5a the admissibility of lift-off

w0< L sinG or qo/k< sinO (7) substantially reduces the PL value, especially for small
values of q*. The resulting equilibrium branch for q*

the equilibrium equation is - 0.1 is shown as a solid line. Note that the correspond-
~ing PI equals 1.2; thus this value is about 25% lower than

PsinG G +q* cosG (8) the P .for the e:ase when lift-off is not allowed.
~Figure Sb shows that the admissibility of lift-off cre-

where ates a PL smaller than P~r, even for an equilibrium
branch that is monotonically increasing with no lift-off.

P*= PL/3s; q* = qoL 216s. (9) This is an example where a stability analysis of the bi-
furcation point on the undeformed branch (for example,

FThe corresponding equilibrium branches for .* = Q.2, the Koiter method) is not suitable for predicting whether

1.0 and a range of q* values are shown in Figure 5. P1 exists.

2b Tisma ocu i a atul itatonwih lotng pont. owve, t asshwnbyKer 193)t3t
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Figure 5. Equilibrium branches for model with lift-off.

The findings of this section suggest that for com- SEMI-INFINITE FLOATING PLATE
pressed floating ice plates, even in the absence of lift- WITH FREE EDGE
off between plate and liquid base, a PL smaller than

Pcr may exist, as shown in Figure 3a. The results in The problem under consideration is shown in Figure
Figure 5 suggest that the possibility of lift-off may 6. Because the load p (per unit length of plate boundary)
greatly affect the post-buckling equilibrium branches is assumed to be constant, the plate displacements will
and thus also the lower buckling loadsPL. Occurrence be functions of x only. The vertical displacement com-
of lift-off may even create a PL value where one does ponent of a point (x, y) on the middle plane is assumed
not exist when lift-off is not allowed, in the form w0 + w (x); w0 = constant is the rigid body

To establish whether floating ice plates do respond displacement due to the weight of plate q0 (per unit
in this way requires the solution of the nonlinear equa- area), and w(x) is caused by bending deformations.
tions for plates on a liquid base. The study of all these Thus, q0 

= yw 0. Following the derivations in Kappus
phenomena is beyond the scope of the present report. (1939) or Kerr (1972), using Lagrange coordinates and
Therefore, in the remainder of this report only the be- neglecting the extensibility of the middle plane, the
havior of the equilibrium branches of compressed differential equation for w (x) is

floating ice plates in the vicinity of Pcr (as shown in
Figure 3a) is investigated in order to establish if, and w +' 4wrwFw "f+ w' +4 4w'w

under what conditions, aPL smaller than Pcr will exist TWO (1 -w' 2 )2  W

in the absence of lift-off.

W +.w 0 (10)
D(1-w' 2 )12 D

pI

Figure 6. Seml-Infinite plate with free edge.
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where D = Eh3l/12(l -v 2 ) is the flexural rigidity of the Applying the second condition in eq 16, Fe(O) = 0,
plate, 'y is the base modulus, and ()' d( )Idx. The. to the eq 10-12 and noting that because of eq 17 the
boundary conditions are derivatives w(n) (x, 0) = 0, we obtain

w"(0) = 0 (11) Lwe(x,O)=O 0=<x<-o (18)

DIw___ = 0. (12) whereI Ix1=0
L = D( )i +p(0)( )"+3y (19)

The formulation is highly nonlinear. In the mathe-
matical literature there are no methods, as yet, for and the boundary conditions
obtaining an exact closed form solution for this bound-
ary value problem. Therefore, in the following, we we' (0, 0) = 0 (20)
analyze the post-buckling equilibrium branch in the
vicinity Of Pcr in order to establish if PL exists. This Dw " (0, 0) +p(O)w, (0, 0) = 0. (21)
is done using the perturbation method (Kerr 1972).

Following Keller (1968) the variablesp and w(x) This isa linear eigenvalue problem for w,(x,0). It is
are expanded in a Taylor series: identical to the formulation in the Euler method for ob-

tainingpcr.
p(e) =p(O)+p (O)e+p (0) e2 /2! +pee(0 ) e3/3! +... This eigenvalue problem is satisfied by the trivial

solution
w(x, e) = w(x, 0) + we (x, 0)e + we (x, 0) e2/2! w" (x, 0) -= 0 (22)"

+ W .e(x,0) e3/3! +... (13)
which represents the continuation of the undeformed

where e is a small parameter. Denoting symbolically equilibrium branch. It is also satisfied, for the equili-
the nonlinear formulation consisting of eq 10-12 by brium branch which corresponds to w (x, e) * 0, by

the first eigenvalue (Rzhanitsyn 1955):
FIw(x),p] =0, (14)

it then follows, because of eq 13, that F = F(e) only.

Assuming that F is differentiable, we write and the corresponding eigenfunction:

F(e) = F(0) + Fe(0)e + Fee(0) e2/2! +.. = 0. w,(x, 0) = Be' [sin ( 3ax)-3cos(-3ax)]

(15) (24)

Since e is an arbitrary parameter, the above equation where B is an arbitrary constant and ct = 7T
is satisfied when Next, we form Fee(0) = 0. The resulting equations

are the differential equation for wee (x, 0)
Lwee(xO)=-2pe(O)w,'(x,O) 

0<x<o (25)
These are the equations for the determination of the
coefficients in eq 13.* and the boundary conditions

It should be noted that in eq 13 the term w(x, 0)
represents the pre-buckling state. Hence wee (0,0) = 0 (26)

w(x, 0) 0. (17) Dw. (0, 0) ip(O)we, (0, 0) = -2p, (O)we (0,o)

The formulation which corresponds to the first con- (27)
dition in eq 16, F(0) = 0, is satisfied for any point on
the equilibrium branch with w (x, 0) E-0. where the differential operator L is given in eq 19. The

above boundary value problem is satisfied for
*Equation 15 may also be obtained by substituting eq 13 into
14 and then by grouping terms of equal powers in e. we(x, 0) =0 and w,,(x, 0) -- 0 (28)

5



which represent the continuation of the undeformed given by eq 25-27 reduces to the problem for we(x, 0)
equilibrium branch. For the equilibrium branch at given by eq 18-21. Thus Wee(X, 0) and we(x,0) differ
the bifurcation point which corresponds to w(x, e) * 0, by an as yet undetermined coefficient 3, namely,
the operator L in eq 19 is singular [note that the cor-
responding homogeneous problem is identical to the we, (x, 0) = Owe (x, 0). (34)
one for we (x, 0)]. Hence, a solution Wee (x, 0) will
exist only if the Fredholm alternative is satisfied. To determine the next coefficients in eq 13 we form

In this connection, the nonhomogeneity in the se- Fee(O) = 0. The resulting equations are the differential
cond boundary condition is eliminated first, by intro- equation
ducing a new variable v1 (x) as follows:

2(0xLweee(X,O0) = f(x) 0 =<x < - (35)
wee~,O)Vl() 2 (Ox w(0,0). (29)

wp0 (X0) = V (X) - !!(O w( where, noting that pe (0) = 0,

With this transformation, differential equation 25 f(x) - 6 D ( ... + w"'3 + '2 w)
becomes

+omes+ 9pw"2 w + 3Peew ] , =0  (36)

LVl = 2pe(O)-w'(x,,j (25') and the boundary conditions

and the boundary conditions in eq 26 and 27 become wee(O, 0) = 0 (37)
''(0) 0 () (0, 0) +p (O)w,, (0, 0) = - 3Ioe (O)w" (0, 0)v;(O = 0(26') DWee,, /e

Dv.'(0) +p(o) v1 (0) = 0. (27') + [w'
2 (0, 0)w ,,, (0,0) + 2w" (0, O)w''

2 (0, 0)iJ

According to the Fredholm alternative, a solution (38)
V1 (x), and hence we,(x, 0), will exist only if

The above equations are satisfied for

PIOr/ 1(,)W1(')Oxd=0 We (X) 0; Wee (X,0). 0; Wee.e(X0) 0 (39)

(30) which represent the continuation of the undeformed

equilibrium branch.
where P(x) is the nonzero solution of the homogeneous For the deformed branch at the bifurcation point,
adjoint problem. the above equations constitute a nonhomogeneous

Because the operator is self-adjoint, it follows that boundary value problem with a singular operator. To
facilitate the use of the Fredholm alternative, the non-

(X) = w(x, 0) (31) homogeneity in the second boundary condition is
eliminated by introducing a new variable v(x) as

and the solvability condition (eq 30) reduces to follows:

We,(x,)=(X 3{...}X (40)
p,(0) w"(0,0) -W' (,0) we(x,0)dx = 0. P( )

(32) where {...} is from eq 38. With this transformation,

differential equation 35 becomes
Noting that we (x, 0) is given in eq 24 and performing
the integrations, it may be shown that the integral Lv =f(x) + L [Pee (O)w, (0,O)
does not vanish. Hence eq 32 is satisfied when p(O)

Pe(O) = 0. (33) + Dw 2 (0, O)we"(O,0)+2Dw (0,O)w (0,0)1

With eq 33, the boundary value problem for We, (x, 0) (35')

6



and the boundary conditions of eq 37 and 38 become should take this possibility into consideration. As
shown in the model study, lift-off may strongly affect

v"(0) = 0 (37') the PL value and hence also the buckling load.

The parameter k* in the model shown in Figure 2
Dv.'(O) +p(0)v' (0) = 0. (39') represents the ratio of the stiffness of the base to the

stiffness of the floating ice cover. For floating covers
According to the Fredholm alternative, a solution v(x), the stiffness of the liquid base is constant, whereas
and hence weee(x, 0), will exist only when the plate stiffness reduces with decreasing thickness

of the ice cover. Thus, a k*-type value that corres-
- ponds to a thin floating plate will be much larger than/ If(x) + !'Lux[p (0) (0,0) + Dwv' (0 )w"' 0,0) the k* value for a thick plate that is made of similar

.011 P(0) 1ice.

The post-buckling branch depends on the magni-
+ Dw (0, 0 )w ' (0,0) Olx) dx 0 (41) tude of the k*-type value. Therefore, some buckling

loads obtained from tests with very thin ice plates
where may not be suitable for the interpretation or predic-

tion of the buckling response of thick ice covers. The
W(x) = w, (x, O) (31') results shown in Figure S also suggest that, when using

thin plates in tests, special attention should be devoted
is the nonzero solution of the homogeneous adjoint to the possible occurrence of lift-off and its effect on
problem. the obtained results.

Performing the integrations indicated in eq 41,
noting that f(x) is given in eq 36 and w,(x, 0) in eq 24,
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